Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 5 results ...

Aiyetan, O, A and Dillip, D (2018) System Dynamics Approach to Mitigating Skilled Labour Shortages in the Construction Industry: A South Africa Context . Construction Economics and Building, 18(04), 45-63.

Belayutham, S, Zabidin, N, S and Ibrahim, C, K, I, C (2018) Dynamic Representation of Barriers for Adopting Building Information Modelling in Malaysian Tertiary Education . Construction Economics and Building, 18(04), 24-44.

Langston, C, Chan, E, H, W and Yung, E, H, K (2018) Embodied Carbon and Construction Cost Differences between Hong Kong and Melbourne Buildings . Construction Economics and Building, 18(04), 84-102.

  • Type: Journal Article
  • Keywords: embodied energy, embodied carbon, construction cost, energy-cost relationship, Hong Kong, Melbourne
  • ISBN/ISSN: 2204-9029
  • URL: https://doi.org/10.5130/AJCEB.v18i4.6280
  • Abstract:
    Limiting the amount of embodied carbon in buildings can help minimize the damaging impacts of global warming through lower upstream emission of CO2. This study empirically investigates the embodied carbon footprint of new-build and refurbished buildings in both Hong Kong and Melbourne to determine the embodied carbon profile and its relationship to both embodied energy and construction cost. The Hong Kong findings suggest that mean embodied carbon for refurbished buildings is 33-39% lower than new-build projects, and the cost for refurbished buildings is 22-50% lower than new-build projects (per square metre of floor area). The Melbourne findings, however, suggest that mean embodied carbon for refurbished buildings is 4% lower than new-build projects, and the cost for refurbished buildings is 24% higher than new-build projects (per square metre of floor area). Embodied carbon ranges from 645-1,059 kgCO2e/m2 for new-build and 294-655 kgCO2e/m2 for refurbished projects in Hong Kong, and 1,138-1,705 kgCO2e/m2 for new-build and 900-1,681 kgCO2e/m2 for refurbished projects in Melbourne. The reasons behind these locational discrepancies are explored and critiqued. Overall, a very strong linear relationship between embodied energy and construction cost in both cities was found and can be used to predict the former, given the latter.

Mwelu, N, Davis, P, R, Ke, Y and Watundu, S (2018) Compliance within a Regulatory Framework in Implementing Public Road Construction Projects . Construction Economics and Building, 18(04), 1-23.

Utama, W, P, Chan, A, P, C, Zahoor, H, Gao, R and Peli, M (2018) Exploring the Strategic Motivation of Internationalisation: Indonesian Contractors’ Perspectives . Construction Economics and Building, 18(04), 64-83.